The phenomenal success of the newly-emerging social e-commerce has demonstrated that utilizing social relations is becoming a promising approach to promote e-commerce platforms. In this new scenario, one of the most important problems is to predict the value of a community formed by closely connected users in social networks due to its tremendous business value. However, few works have addressed this problem because of 1) its novel setting and 2) its challenging nature that the structure of a community has complex effects on its value. To bridge this gap, we develop a underline{M}ulti-scale underline{S}tructure-aware underline{C}ommunity value prediction network (MSC) that jointly models the structural information of different scales, including peer relations, community structure, and inter-community connections, to predict the value of given communities. Specifically, we first proposed a Masked Edge Learning Graph Convolutional Network (MEL-GCN) based on a novel masked propagation mechanism to model peer influence. Then, we design a Pair-wise Community Pooling (PCPool) module to capture critical community structures. Finally, we model the inter-community connections by distinguishing intra-community edges from inter-community edges and employing a Multi-aggregator Framework (MAF). Extensive experiments on a large-scale real-world social e-commerce dataset demonstrate our method’s superior performance over state-of-the-art baselines, with a relative performance gain of 11.40%, 10.01%, and 10.97% in MAE, RMSE, and NRMSE, respectively. Further ablation study shows the effectiveness of our designed components.

2021 THE WEB CONFERENCE NEWSLETTER
The Web Conference is announcing latest news and developments biweekly or on a monthly basis. We respect The General Data Protection Regulation 2016/679.