We study identifying user clusters in contextual multi-armed bandits (MAB). Contextual MAB is an effective tool for many real applications, such as content recommendation and online advertisement. In practice, user dependency plays an essential role in the user’s actions, and thus the rewards. Clustering similar users can improve the quality of reward estimation, which in turn leads to more effective content recommendation and targeted advertising. Different from traditional clustering settings, we cluster users based on an unknown bandit parameter, which will be estimated incrementally. In particular, we define the problem of cluster detection in contextual MAB, and propose a bandit algorithm, LOCB, embedded with local clustering procedure. And, we provide theoretical analysis about LOCB in terms of the correctness and efficiency of clustering and its regret bound. Finally, we evaluate the proposed algorithm from various aspects, which outperforms state-of-the-art baselines significantly.

2021 THE WEB CONFERENCE NEWSLETTER
The Web Conference is announcing latest news and developments biweekly or on a monthly basis. We respect The General Data Protection Regulation 2016/679.