Adversarial examples pose severe threats to Android malware detection because they can render the machine learning based detection systems useless. How to effectively detect Android malware under various adversarial example attacks becomes an essential but very challenging issue. Existing adversarial example defense mechanisms usually rely heavily on the instances or the knowledge of adversarial examples, and thus their usability and effectiveness are significantly limited because they often cannot resist the unseen-type adversarial examples. In this paper, we propose a novel robust Android malware detection approach that can resist adversarial examples without requiring their instances or knowledge by jointly investigating malware detection and adversarial example defenses. More precisely, our approach employs a new VAE (variational autoencoder) and an MLP (multi-layer perceptron) to detect malware, and combines their detection outcomes to make the final decision. In particular, we share a feature extraction network between the VAE and the MLP to reduce model complexity and design a new loss function to disentangle the features of different classes, hence improving detection performance. Extensive experiments confirm our model’s advantage in accuracy and robustness. Our method outperforms $11$ state-of-the-art robust Android malware detection models when resisting $7$ kinds of adversarial example attacks.

The Web Conference is announcing latest news and developments biweekly or on a monthly basis. We respect The General Data Protection Regulation 2016/679.